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Abstract

For decades now, the notion of “performance”
has been synonymous with “speed” (as measured in
FLOPS, short for floating-point operations per sec-
ond). Unfortunately, this particular focus has led to the
emergence of supercomputers that consume egregious
amounts of electrical power and produce so much heat
that extravagant cooling facilities must be constructed
to ensure proper operation. In addition, the emphasis
on speed as the performance metric has caused other
performance metrics to be largely ignored, e.g., relia-
bility, availability, and usability. As a consequence, all
of the above has led to an extraordinary increase in the
total cost of ownership (TCO) of a supercomputer.

Despite the importance of the TOP500 List, we ar-
gue that the list makes it much more difficult for the
high-performance computing (HPC) community to fo-
cus on performance metrics other than speed. There-
fore, to raise awareness to other performance metrics
of interest, e.g., energy efficiency for improved reliabil-
ity, we propose a Green500 List and discuss the poten-
tial metrics that would be used to rank supercomputing
systems on such a list.

1 Motivation

Would it be correct to say that supercomputers to-
day have reached efficiency levels that no one could
have ever imagined decades ago? Depending on the
perspective, one could argue that the answer might be
yes as well as no. “Yes” if one considers efficiency as
only the ability to perform a certain number of instruc-
tions per second on a given supercomputer. “No” if one
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starts to consider other factors such as reliability, avail-
ability, and total cost of ownership (TCO) [3], just to
name a few.

Currently, the focus of the TOP500 List
(http://www.top500.org/) is solely on the perfor-
mance metric of speed, as defined by FLOPS, short for
floating-point operations per second. While this focus
has led to supercomputers that can complete hundreds
of trillions of floating-point operations per second, it
has also led to supercomputers that consume egregious
amounts of electrical power and produce so much heat
that extravagant cooling facilities must be constructed
to ensure proper operation.

System CPUs MTB(I/F) Power Space
(Hours) (kW) (Sq Ft)

ASC Q 8,192 6.5 3800 20,000
ASC
White

8,192 40 (’03)
5.0 (’01)

1000 10,000

PSC
Lemieux

3,016 9.7 N/A N/A

MTB(I/F): Mean Time Between (Interrupts/Failures)

Table 1. Reliability and Availability of HPC
Systems.

For instance, Seager of Lawrence Livermore Na-
tional Laboratory (LLNL) notes that the large con-
sumption of electricity to power and cool his supercom-
puters leads to exorbitant energy bills, e.g., $14M/year
($8M to power and $6M to cool) [15]. While at
Los Alamos National Laboratory (LANL), the build-
ing for the ASC Q supercomputer cost nearly $100M
to construct. Even with such extravagant facilities in
place, the excessive heat generation impacts the reli-
ability and availability of such systems, as shown in



Table 1 [14].1 Therefore, not too surprisingly, all of
the above results in an astronomical increase in the
total cost of ownership (TCO).

With the above considerations in mind, we argue
for the need to maintain a list where the performance
metric of interest is not only speed but also energy effi-
ciency as it relates to reliability and availability. There-
fore, we propose a Green500 List and discuss the poten-
tial metrics that would be used to rank supercomputing
systems on such a list.

2 Background

Efforts towards building energy-efficient supercom-
puters include Green Destiny [3, 17], a 240-processor
supercomputer that consumed just 3.2 kilowatts (kW)
of power when booted diskless.2 Although this low-
power supercomputer was criticized for its computing
ineptitude, Green Destiny with its customized high-
performance code-morphing software produced a Lin-
pack rating, i.e., 101 Gflops, that was equal to that of
a contemporary 256-processor SGI Origin 2000 at the
time. Furthermore, the extraordinarily low power con-
sumption of Green Destiny resulted in an extremely
reliable supercomputer that had no unscheduled down-
time in its 24-month existence. It is also important to
note here that Green Destiny never required any spe-
cial cooling or air filtration in order to keep it running.

With efforts such as Green Destiny from 2001-2002,
microprocessor vendors have been slowly giving up on
the power-hungry, clock-speed race and focusing more
on efficient processor design. For example, in Oc-
tober 2004, Intel announced that after years of pro-
moting clock speed as the most important indicator
of processor performance, it now believes that intro-
ducing multicore products and new silicon features are
the best ways to improve processor performance [11].
A month later in November 2004, the energy-efficient
IBM BlueGene/L debuted at #1 on the TOP500 Su-
percomputer List using slowly-clocked 700-MHz Pow-
erPC processors in spite of the availability of PowerPC
processors with much higher clock speeds, and hence,
more power-hungry appetites. More recently, PA Semi
announced its PWRficientTMProcessor Family, which
is based on the Power ArchitectureTM(licensed from
IBM). As noted by the company’s renowned CEO,
Dan Dobberpuhl, PA Semi is aiming to “really drive
a breakthrough in performance per watt.” [16]. Thus,

1Arrhenius’ equation, as applied to microelectronics, projects
that the failure rate of a compute node in a supercomputer dou-
bles with every 10oC (18oF) rise in temperature.

23.2 kW is roughly equivalent to the power draw of two
hairdryers.

the above evidence indicates that the commercial in-
dustry is moving more towards lower-power and more
energy-efficient (but still high-performing) micropro-
cessors.

An alternative approach towards energy-efficient
HPC is to use existing power-hungry microprocessors
but to leverage an interface to the microprocessor that
allows for the dynamic scaling of a microprocessor’s
clock frequency and supply voltage, as the power con-
sumption of a microprocessor is directly proportional
to the clock frequency and the square of the supply
voltage. Such research has gained significant traction
in the HPC community [2, 4, 5, 6, 7, 9].

Irrespective of the approach towards energy-efficient
supercomputing, we believe that there exists a need to
develop an alternative to the TOP500 Supercomputer
List: the Green500 Supercomputer List. But creating
such a list means determining what metric(s) to use to
rank the supercomputers. The purpose of this paper is
to decide on such a metric and to use that metric to
rank supercomputers relative to energy efficiency.

2.1 Which Metric?

Supercomputers on the TOP500 List use FLOPS
— short for floating-point operations per second — as
the evaluation metric for performance relative to speed.
However, the HPC community now understands that
supercomputers should not be evaluated solely on the
basis of speed but should also consider metrics related
to usability, availability, and energy efficiency. With re-
spect to the latter, researchers have borrowed the EDn

metric3 from the the circuit-design domain in order to
quantify the energy-performance efficiency of different
systems [1, 8, 12, 13].

In [7], Cameron et al. propose a variant to the EDn

metric. Specifically, they introduce a weighting vari-
able called ∂ that could be used to put more emphasis
on energy E or on performance D, depending on what
is of interest to the end user. In short, the end user is
allowed to choose the value for ∂. What this means is
that the end user can ultimately choose from an infi-
nite number of variants of the EDn metric, but it still
leaves the problem of what value of ∂ should the end
user choose and what value, if any, should be used to
order the Green500 Supercomputer List. On the other
hand, Hsu and Feng demonstrate how various EDn

metrics are arguably biased towards massively paral-
lel supercomputing systems [10]. Rather than use an
EDn-based metric, they ultimately “fall back” to using

3E is the energy being used by a system while running a
benchmark, and D is the time taken to complete that same
benchmark.



the FLOPS/watt metric for energy efficiency. All this
suggests that there is still no consensus amongst HPC
researchers on which metric to choose for calculating
the energy efficiency of a supercomputer.

Rather than simply adopt an energy-efficiency met-
ric and apply it to our tested systems (and even the
systems on the TOP500 List), we first present the re-
sults of various energy-efficiency metrics across a mul-
titude of parallel-computing systems. Next, we pro-
vide some analysis and insight into what factors should
be considered when comparing the energy efficiency of
different supercomputers, using the currently available
metrics. Based on our analysis, we then make a case
for a Green500 Supercomputer List, an energy-efficient
list that will implicitly capture the performance met-
rics of speed and energy usage. In addition, we will also
discuss (1) how the results from a particular efficiency
metric vary when only CPU power consumption is used
instead of total system power and (2) when CPU power
consumption should be used in calculating energy effi-
ciency instead of total system power.

The remainder of the paper is organized as follows.
Section 3 presents our experimental setup, experimen-
tal results, and discussion of the results. In partic-
ular, we present and discuss the results of applying
various efficiency metrics across systems with different
architectures. Section 4 shows how a subset of super-
computers from the TOP500 list would be ranked in a
Green500 Supercomputer List. Finally, we present our
conclusions in Section 5.

3 Experiments

In this section, we first describe the experimental
set-up that we use to take our performance measure-
ments. Then, we present and discuss the results of ap-
plying different energy-efficient metrics across a variety
of parallel-computing platforms.

3.1 Experimental Set-Up

Figure 1 shows the hardware set-up for our exper-
iments. At the upper left is the profiling computer,
which records the data that is measured on our Yoko-
gawa digital power meter, shown in the lower left of
the figure. To measure the power consumption of the
parallel-computing system that appears on the right-
hand side of the figure, we connected our power meter
to the same power strip as the parallel-computing sys-
tem. The power meter then continuously samples the
instantaneous wattage at a rate of 50 kHz (i.e., every 20
µs) and delivers the readings to the profiling computer.

 PARALLEL
COMPUTING
  SYSTEM

     DIGITAL
POWER METER

 PROFILING
COMPUTER

POWER STRIP

Figure 1. Experimental Set-Up for Benchmark
Tests.

For the purposes of comparing results, we kept the
software configuration across all the parallel-computing
systems as similar as possible. Relative to the appli-
cation software set-up, we chose the Linpack bench-
mark to evaluate the FLOPS performance of our par-
allel computing systems (for legacy reasons relative to
the TOP500 Supercomputer List), compiled Linpack
using the latest GotoBLAS library, and ran Linpack us-
ing LAM-MPI 7.1.1. The problem size for Linpack was
kept the same for all the test runs on all the systems.
Relative to the system software, we ran SUSELinux OS
(9.3/10.0) with the Linux 2.6.x kernel.

Each parallel-computing system under evaluation
consisted of exactly four processors. However, the
hardware configuration of each system varied in terms
of topology and processor architecture. With respect
to topology, the systems varied from having four single-
processor systems interconnected via Gigabit Ethernet
to two dual-processor systems interconnected via Gi-
gabit Ethernet to a single quad-processor system.

With respect to processor architecture, we drew
from three 64-bit families: Intel Pentium4, AMD
Athlon64, and AMD Opteron, as shown in Table 2.
Cluster C1 consists of four uniprocessor nodes, each
with the latest 3.6-GHz Pentium4 processor, intercon-
nected via Gigabit Ethernet. Cluster C2 is a single
SMP node consisting of four 2.0-GHz Opteron proces-
sors. Cluster C3 consists of four uniprocessor nodes,
each with 2.4-GHz Athlon64 processors, interconnected
via Gigabit Ethernet. Cluster C6 contains dual 2.0-
GHz Opteron processors in each node with Gigabit
Ethernet interconnecting the nodes. Finally, Clus-
ters C4, C5, and C7 are static power-aware variants
of C3. That is, we ran Linpack on cluster C3 four
times but at different frequencies each time, i.e., 2.4,
2.2, 2.0, and 1.8 GHz.



Clus-
ter
Name

Process-
ors

Topo-
logy

Total
Mem-
ory
(GB)

Linpack
(GFlops)

Avg.
Power
Used
(Watts)

Time
taken
(secs)

ED
(∗106)

ED2

(∗109)
ED3

(∗1012)
Flops/
Watt

V∂=0.5 V∂=−0.5

C1 3.6 GHz
Pen-
tium4

4 * 1P 4.0 19.550 713.20 315.84 71.14 22.47 7.09 27.41 14.92 33.92

C2 2.0 GHz
Opterons

1 * 4P 4.0 12.370 415.90 499.36 103.70 51.79 25.86 29.74 56.74 47.20

C3 2.4 GHz
Athlon64

4 * 1P 4.0 14.310 668.50 431.56 124.50 53.73 23.19 21.41 43.17 66.87

C4 2.2 GHz
Athlon64

4 * 1P 4.0 13.400 608.50 460.89 129.26 59.57 27.46 22.02 51.84 68.45

C5 2.0 GHz
Athlon64

4 * 1P 4.0 12.350 560.50 499.79 140.00 69.97 34.97 22.03 66.07 74.10

C6 2.0 GHz
Opterons

2 * 2P 4.0 12.840 615.30 481.01 142.36 64.48 32.94 20.87 60.54 77.44

C7 1.8 GHz
Athlon64

4 * 1P 4.0 11.230 520.90 549.87 157.49 86.60 47.62 21.56 88.97 84.29

V∂=E(1−∂) D2(1+∂)

Table 2. Efficiency of different clusters according to various metrics.

3.2 Results and Analysis

Table 2 shows the measured performance numbers
(i.e., Linpack rating, average power used, and time
taken) and derived efficiency numbers (i.e., EDn and
Flops/Watt) of our clusters, relative to different met-
rics that exist today. Table 3 provides a Green500 sum-
mary of how our clusters ranked according to different
efficiency metrics.

Looking at last column of Table 3, Cluster C2 —
the single quad-processor node — clearly consumes the
least amount of power while Cluster C1 — a cluster
of uniprocessor nodes — consumes the most. Yet in
spite of these disparate power-consumption numbers,
both C1 and C2 consistently finish in the top two rel-
ative to efficiency.

When using any of the standard EDn metrics, Clus-
ter C1 always outranks Cluster C2 because these met-
rics place greater emphasis on performance than on
power consumption. This emphasis becomes much
more evident as the value of n increases.

Perhaps the most interesting observation from Ta-
ble 3 revolves around Cluster C3. Though the raw
power consumption of C3 is second only to C1 (see
the last column of Table 3), Cluster C3 ranks in the
top three for every EDn metric but ranks amongst the
bottom two, relative to the Flops/Watt metric. This
extremely large change in rankings is due to the fact

that the EDn metrics place greater emphasis on per-
formance (as n increases) while the Flops/Watt metric
effectively “penalizes” Cluster C3 for consuming too
much power, and hence, generating more heat and re-
ducing reliability.

Now, let us examine the efficiency metrics at the
extremes. Relative to the Flops/Watt metric, we see
that Cluster C2 is the most efficient and is 39% bet-
ter than Cluster C7, which comes out to be the least
efficient, relative to the Flops/Watt metric. On the
other hand, relative to the EDn metrics, the difference
in efficiency between the most efficient cluster and the
least efficient cluster is 121.3% for the ED1 metric and
increases up to 571.6% for ED3. Does this huge vari-
ation fairly capture the difference in efficiency of the
clusters at the extremes?

In our experiments, we also generated data to rank
the systems according to more sophisticated variants
of EDn, i.e., V∂=0.5 and V∂=−0.5. For details of how
these variants work, please refer to [7]. The results are
presented in last two columns of Table 2. Looking at
the resultant rankings from these metrics in Table 3,
the negative value of ∂ produces the same ranking as
the other EDn metrics. For positive values of ∂, the
metric places greater emphasis on performance, i.e.,
D, than on energy consumption, i.e., E. Therefore,
as ∂ increases towards one, the metric approaches the



Green500 Ranking TOP500
Ranking

Power500
Ranking

Rank ED ED2 ED3 V∂=−0.5 V∂=0.5 Flops/
Watt

Flops Watts

1 C1 C1 C1 C1 C1 C2 C1 C2
2 C2 C2 C2 C2 C3 C1 C3 C7
3 C3 C3 C3 C3 C4 C5 C4 C5
4 C4 C4 C4 C4 C2 C4 C6 C4
5 C5 C5 C5 C5 C6 C7 C2 C6
6 C6 C6 C6 C6 C5 C3 C5 C3
7 C7 C7 C7 C7 C7 C6 C7 C1

Table 3. Ranking of different clusters according to various metrics.

limit E0D4 and behaves more like the standard Flops
metric, which is used for TOP500 List. This analy-
sis is supported by the numbers in the Flops column
and the V∂=0.5 column in Table 3. That is, for posi-
tive values of ∂, the ranking order is nearly identical
to the TOP500 ranking, which only takes performance
into consideration. Based on the above discussion, we
believe that Flops/Watt is a more balanced metric for
comparing the efficiency of cluster supercomputers.

Finally, despite using small four-processor clusters,
it is important to note that the EDn and Flops/Watt
metrics already produce noticeably different results in
comparing the efficiency of systems. If this is the case
now when there is not as much difference between the
cluster systems, then the difference in rankings will be
even more pronounced when these metrics are used to
rank, say the TOP500 supercomputers — a topic which
will be discussed in Section 4.

Metric Usage

Efficiency metrics are not only used for comparing
the efficiency of supercomputers, but they also play a
major role in comparing or evaluating different power-
aware techniques that are used to reduce the power
utilization of systems while minimizing the impact on
overall execution performance. As additional research
on power-aware techniques is completed, the need for
metrics to evaluate these techniques will be felt more
than ever.

When comparing two different power-aware algo-
rithms, it is very important to understand what the
metric that is used to compare the results is report-
ing and what that metric should actually report. We
all know that the CPU consumes the major amount
of power in a system. However, the actual percent-
age power that a CPU consumes varies from system

to system. Figure 2 shows the percentage of power
that the CPU consumes in three different systems in
our lab. In Cluster C3, processors consume 43.50% of
the total cluster power; while in Cluster C2, proces-
sors consume a whopping 64.57% of the total cluster
power. And in the case of our four-processor laptop
cluster (L − Cluster), the percentage of power drawn
by the processor shoots all the way up to 83.37%.

Most power-aware algorithms try to save power in
a system by slowing down the processors and reducing
the power consumption of processors only. Now, if a
power-aware algorithm ‘x’ reports 50% total power sav-
ings on Cluster C3 cluster, and another algorithm ‘y’
reports 50% total power savings on Cluster C2, what
does it mean? It means that algorithm ‘x’ is more ef-
fective in saving processor power than algorithm ‘y’.
It can also be inferred that while comparing two algo-
rithms using a particular metric, it is not always fair to
use total system power to calculate power (or energy)
efficiency.

Figure 2. Per-Node Power usage of Clusters.

The decision to use “total system power” or “only
the CPU power” depends on the type of systems that
are being compared. One should also keep in mind



that the processor power usage is not measured di-
rectly, it is oftentimes inferred from the total power
usage of the system, as shown in [9]. This will result
in some information loss. We can say that, if the pro-
cessors in the systems under comparison consume a
similar percentage of total system power, the total sys-
tem power should be used in the metric for calculating
the efficiency. On the other hand, if the percentage
of power consumption for processors differ in systems
under comparison, it would be much fairer to use only
processor power consumption for comparison purposes.

Again looking at Figure 2, it is clear from this figure
that it would not be fair to use total system power
usage to compare two algorithms, if one of them is
running on L-cluster whereas other is running on C2
and C3 clusters.

4 TOP500 as Green500

We all know that TOP500 list of supercomputers
have systems that are quite diverse in both their hard-
ware and software architecture. The first question that
everyone should ask in order to rank the TOP500 sys-
tems in a Green500 list is “Which metric should be
used?”. What characteristics should a metric have so
that it is not biased towards a particular type of sys-
tem? Based on the discussion in Section 3, we be-
lieve that FLOPS/Watt is a better metric to rank the
TOP500 supercomputers as part of a Green500 Super-
computer List.

Table 4 presents some of the TOP500 supercom-
puters and their peak power usage. It also shows
the results of using the FLOPS/Watt metric on them.
The Linpack performance for these supercomputers
was taken from TOP500 list that was released dur-
ing SC|05 in November 2005. The sources for power
usage are various presentations, articles in magazines,
newspapers, and the web sites of several of these su-
percomputers.

Here we elaborate on how we derived the peak power
consumption of some of the systems. The web site of
ASC Purple4 reports that the power usage of Purple
as 7.5 MW, which is the total power that is required
for powering and cooling the supercomputer. The Eu-
rekalert web site5 reports the power usage of Purple as
8 MW. Looking at the comparisons given in a presenta-
tion at one of the BlueGene/L workshops,6 the power
consumption of Purple just to run the machine (but
not cool it) is 4.5 MW. Given the numbers reported

4http://www.llnl.gov/asc/platforms/purple/
5http://www.eurekalert.org/features/doe/2005-06/dlnl-

lsb062405.php
6http://www.lofar.org/BlueGene/

Super-
computer
Name

Peak
Linpack
Perfor-
mance
(GFlops)

Peak
Total
Power
Usage
(kW)

MFlops/
Watt

TOP-
500
Rank

Blue-
Gene/L

367000 2500 146.80 1

ASC Pur-
ple

77824 7600 10.24 3

Columbia 60960 3400 17.93 4
Earth
Simulator

40960 11900 3.44 7

Mare-
Nostrum

42144 1071 39.35 8

Jaguar-
Cray
XT3

24960 1331 18.75 10

ASC Q 20480 10200 2.01 18
ASC
White

12288 2040 6.02 47

Table 4. TOP500 power usage.

by Lawrence Livermore National Laboratory for their
supercomputers, i.e., for every watt of power consumed
by the system, 0.7 watt of power is required to cool it,
the number 4.5 MW is consistent with the 7.5 and 8
MW reported from other sources. We used 7.6 MW
(i.e., 4.5 ∗ 1.7) as the total power required to run and
cool Purple.

For BlueGene/L, Eurekalert reports a total of 2.5
MW of power required to run and cool the system, and
a BlueGene/L presentation reports 1.2 MW to run only
the system.

For the Columbia supercomputer at NASA Ames
Research Center, Jack Dongarra in one of his presen-
tations7 reports the total power usage just to run the
system is 2 MW. Given that the thermal design power
(TDP) of Itanium-2 processors, 10240 of which are used
in Columbia, is 130 watts, the power to run just these
10240 processors comes out to be 1.33 MW. So, 2 MW
seems reasonable if the other components in Columbia
use only 700 kW of power. Now, using the best-case
assumption that for every 1 watt of computer power,
0.7 watt is required to cool it, the total power required
to run and cool Columbia comes out to be 3.4 MW.

For the Japanese Earth Simulator, the total power
usage reported in one of the presentations8 is 7 MW

7www.netlib.org/utk/people/JackDongarra/SLIDES/HK-
2004.pdf

8www.sc.doe.gov/ascr/dongarra.pdf



Relative
Rank

TOP500 Or-
der

Green500
Order

1 BlueGene/L BlueGene/L

2 ASC Purple MareNostrum

3 Columbia Jaguar-Cray
XT3

4 Earth Simu-
lator

Columbia

5 MareNostrum ASC Purple

6 Jaguar-Cray
XT3

ASC White

7 ASC Q Earth Simu-
lator

8 ASC White ASC Q

Table 5. TOP500 Vs Green500.

just to run the system. The total power usage, includ-
ing power needed for cooling, comes out to be 11.9 MW.
The same source also quotes power usage of ASC White
as 1.2 MW and for ASC Q as 6 MW, for just powering
the machines. Adding in the power to cool the ma-
chines increases the total power for White to 2.04 MW
and for Q to 10.2 MW.

The Register9 reports the power usage of MareNos-
trum to be 630 kW just to run the system. This makes
the total power usage of MareNostrum including power
required for cooling to be 1.07 MW.

The data sheet of Cray XT310 reports that each cab-
inet of XT3 consumes 14.5 kW of power and houses 96
Opteron processors of 2.4 GHz each. TOP500 list re-
ports 5200 AMD Opteron processors of 2.4 GHz each in
Jaguar Cray XT3 system. After calculation, the Jaguar
system listed in TOP500 list will use about 54 cabinets
and consume about 783 kW of power just to run the
system. The total power that will include cooling the
system comes out to be 1331 kW.

From Table 5, BlueGene/L, because of its arguably
ideal mix of performance and extremely low power con-
sumption, is ranked #1 on both the TOP500 list and

9http://www.theregister.co.uk/2005/04/13/barcelona supercom
puter/

10http://www.cray.com/products/xt3/

the Green500 list. The TOP500 list ranks the Japanese
Earth Simulator at #7 (or #4 relative to the systems
being considered in Table 5), but it is penalized in the
Green500 list for consuming an exorbitant amount of
power and is ranked second-to-last among the systems
we are presenting. ASC White, on the other hand, is
ranked higher in the Green500 list because of its lower
power usage.

Another somewhat related question that one can ask
here is that while using a metric to list TOP500 su-
percomputers as Green500, should we use CPU power
usage or total system-power usage? The answer is that
we should use the total system-power usage. The usage
of CPU power should be restricted only for comparing
various power-aware algorithms as discussed in the pre-
vious section. While listing systems on the Green500
list, we are concerned about the total power usage as
a result of using the system. We are ranking the sys-
tems as a whole and not just the CPUs. However,
for the sake of posterity, Figure 311, shows the results
of GFlops/Watt but relative to only the CPU power
consumption, not total power consumption. Most no-
tably, the PowerPC-based architectures, i.e., BlueGene
and MareNostrum, achieve a Flops/watt rating that is
about an order of magnitude higher than all other CPU
architectures.

5 Conclusion

In this paper, we made a case for a Green500 Super-
computer List — a list that would not only take perfor-
mance (relative to speed) into consideration but would
also take energy efficiency into account when ranking
supercomputers. In the long run, this list would help
the HPC research community and various vendors by
focusing their attention towards factors other than just
performance (relative to speed).
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